Solar eclipse of February 28, 2044

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 28, 2044,[1] with a magnitude of 0.96. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.7 days after apogee (on February 22, 2044, at 5:20 UTC), the Moon's apparent diameter will be smaller.[2]

Solar eclipse of February 28, 2044
Map
Type of eclipse
NatureAnnular
Gamma−0.9954
Magnitude0.96
Maximum eclipse
Duration147 s (2 min 27 s)
Coordinates62°12′S 25°36′W / 62.2°S 25.6°W / -62.2; -25.6
Max. width of band- km
Times (UTC)
Greatest eclipse20:24:40
References
Saros121 (62 of 71)
Catalog # (SE5000)9605

While the path of annularity will be not visible from any land areas, a partial solar eclipse will be visible for parts of Antarctica and much of South America. This will be the last of 55 umbral eclipses in Solar Saros 121.

Images

edit

 
Animated path

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

February 28, 2044 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2044 February 28 at 18:10:40.7 UTC
Equatorial Conjunction 2044 February 28 at 19:25:50.0 UTC
First Umbral External Contact 2044 February 28 at 20:06:18.0 UTC
Ecliptic Conjunction 2044 February 28 at 20:13:36.1 UTC
First Central Line 2044 February 28 at 20:17:45.9 UTC
Greatest Duration 2044 February 28 at 20:17:45.9 UTC
Greatest Eclipse 2044 February 28 at 20:24:39.5 UTC
Last Central Line 2044 February 28 at 20:32:09.6 UTC
Last Umbral External Contact 2044 February 28 at 20:43:34.0 UTC
Last Penumbral External Contact 2044 February 28 at 22:38:55.6 UTC
February 28, 2044 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.96001
Eclipse Obscuration 0.92161
Gamma −0.99537
Sun Right Ascension 22h45m44.1s
Sun Declination -07°51'30.6"
Sun Semi-Diameter 16'08.8"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 22h47m30.6s
Moon Declination -08°41'25.7"
Moon Semi-Diameter 15'29.6"
Moon Equatorial Horizontal Parallax 0°56'51.8"
ΔT 80.8 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of February–March 2044
February 28
Ascending node (new moon)
March 13
Descending node (full moon)
   
Annular solar eclipse
Solar Saros 121
Total lunar eclipse
Lunar Saros 133
edit

Eclipses in 2044

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 121

edit

Inex

edit

Triad

edit

Solar eclipses of 2044–2047

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on June 23, 2047 and December 16, 2047 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2044 to 2047
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121 February 28, 2044
 
Annular
−0.9954 126 August 23, 2044
 
Total
0.9613
131 February 16, 2045
 
Annular
−0.3125 136 August 12, 2045
 
Total
0.2116
141 February 5, 2046
 
Annular
0.3765 146 August 2, 2046
 
Total
−0.535
151 January 26, 2047
 
Partial
1.045 156 July 22, 2047
 
Partial
−1.3477

Saros 121

edit

This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 25, 944 AD. It contains total eclipses from July 10, 1070 through October 9, 1809; hybrid eclipses on October 20, 1827 and October 30, 1845; and annular eclipses from November 11, 1863 through February 28, 2044. The series ends at member 71 as a partial eclipse on June 7, 2206. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 6 minutes, 20 seconds on June 21, 1629, and the longest duration of annularity will be produced by member 62 at 2 minutes, 27 seconds on February 28, 2044. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]

Series members 49–70 occur between 1801 and 2200:
49 50 51
 
October 9, 1809
 
October 20, 1827
 
October 30, 1845
52 53 54
 
November 11, 1863
 
November 21, 1881
 
December 3, 1899
55 56 57
 
December 14, 1917
 
December 25, 1935
 
January 5, 1954
58 59 60
 
January 16, 1972
 
January 26, 1990
 
February 7, 2008
61 62 63
 
February 17, 2026
 
February 28, 2044
 
March 11, 2062
64 65 66
 
March 21, 2080
 
April 1, 2098
 
April 13, 2116
67 68 69
 
April 24, 2134
 
May 4, 2152
 
May 16, 2170
70
 
May 26, 2188

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 23, 2036 and July 23, 2112
July 23–24 May 11 February 27–28 December 16–17 October 4–5
117 119 121 123 125
 
July 23, 2036
 
May 11, 2040
 
February 28, 2044
 
December 16, 2047
 
October 4, 2051
127 129 131 133 135
 
July 24, 2055
 
May 11, 2059
 
February 28, 2063
 
December 17, 2066
 
October 4, 2070
137 139 141 143 145
 
July 24, 2074
 
May 11, 2078
 
February 27, 2082
 
December 16, 2085
 
October 4, 2089
147 149 151 153 155
 
July 23, 2093
 
May 11, 2097
 
February 28, 2101
 
December 17, 2104
 
October 5, 2108
157
 
July 23, 2112

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on April 8, 1902 (part of Saros 108) and January 5, 1935 (part of Saros 111) are also a part of this series but are not included in the table below.

Series members between 2000 and 2200
 
July 1, 2000
(Saros 117)
 
June 1, 2011
(Saros 118)
 
April 30, 2022
(Saros 119)
 
March 30, 2033
(Saros 120)
 
February 28, 2044
(Saros 121)
 
January 27, 2055
(Saros 122)
 
December 27, 2065
(Saros 123)
 
November 26, 2076
(Saros 124)
 
October 26, 2087
(Saros 125)
 
September 25, 2098
(Saros 126)
 
August 26, 2109
(Saros 127)
 
July 25, 2120
(Saros 128)
 
June 25, 2131
(Saros 129)
 
May 25, 2142
(Saros 130)
 
April 23, 2153
(Saros 131)
 
March 23, 2164
(Saros 132)
 
February 21, 2175
(Saros 133)
 
January 20, 2186
(Saros 134)
 
December 19, 2196
(Saros 135)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
August 7, 1812
(Saros 113)
 
July 18, 1841
(Saros 114)
 
June 28, 1870
(Saros 115)
 
June 8, 1899
(Saros 116)
 
May 19, 1928
(Saros 117)
 
April 30, 1957
(Saros 118)
 
April 9, 1986
(Saros 119)
 
March 20, 2015
(Saros 120)
 
February 28, 2044
(Saros 121)
 
February 7, 2073
(Saros 122)
 
January 19, 2102
(Saros 123)
 
December 30, 2130
(Saros 124)
 
December 9, 2159
(Saros 125)
 
November 18, 2188
(Saros 126)

References

edit
  1. ^ "February 28, 2044 Annular Solar Eclipse". timeanddate. Retrieved 14 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 August 2024.
  3. ^ "Annular Solar Eclipse of 2044 Feb 28". EclipseWise.com. Retrieved 14 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 121". eclipse.gsfc.nasa.gov.
edit